Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.882
Filtrar
1.
Chem Commun (Camb) ; 60(31): 4140-4147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38566603

RESUMO

Superoxide dismutase (SOD) is an important metalloenzyme that catalyzes the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). However, the clinical application of SOD is severely limited due to its structural instability and high cost. Compared with natural enzymes, nanomaterials with enzyme-like activity, nanoenzymes, are more stable, economical and easy to modify and their activity can be adjusted. Certain nanozymes that exhibit SOD-like activity have been created and shown to help prevent illnesses brought about by oxidative stress. These SOD-like nanozymes offer an important solution to the problems associated with the clinical application of SOD. In this review, we briefly introduce neurodegenerative diseases, present the research progress of SOD-like nanoenzymes in the diagnosis and treatment of brain diseases, review their mechanism of action in the treatment and diagnosis of brain diseases, and discuss the shortcomings of the current research with a view to providing a reference for future research. We expect more highly active SOD-like nanoenzymes to be developed with a wide range of applications in the diagnosis and treatment of brain diseases.


Assuntos
Encefalopatias , Superóxido Dismutase , Humanos , Superóxido Dismutase/metabolismo , Peróxido de Hidrogênio/química , Superóxidos/química , Estresse Oxidativo , Oxigênio , Encefalopatias/diagnóstico , Encefalopatias/tratamento farmacológico
2.
Biosens Bioelectron ; 254: 116228, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522233

RESUMO

Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOT:PSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 µM and 1.34 µM-42.97 µM) with corresponding sensitivity of 0.479 and 0.052 µA µM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 µM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.


Assuntos
Técnicas Biossensoriais , Grafite , Superóxidos/química , Carboximetilcelulose Sódica , Peróxido de Hidrogênio , Superóxido Dismutase-1 , Técnicas Biossensoriais/métodos , Grafite/química , Superóxido Dismutase/química , Técnicas Eletroquímicas
3.
Inorg Chem ; 63(4): 2194-2203, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231137

RESUMO

In the postulated catalytic cycle of class Ib Mn2 ribonucleotide reductases (RNRs), a MnII2 core is suggested to react with superoxide (O2·-) to generate peroxido-MnIIMnIII and oxo-MnIIIMnIV entities prior to proton-coupled electron transfer (PCET) oxidation of tyrosine. There is limited experimental support for this mechanism. We demonstrate that [MnII2(BPMP)(OAc)2](ClO4) (1, HBPMP = 2,6-bis[(bis(2 pyridylmethyl)amino)methyl]-4-methylphenol) was converted to peroxido-MnIIMnIII (2) in the presence of superoxide anion that converted to (µ-O)(µ-OH)MnIIIMnIV (3) via the addition of an H+-donor (p-TsOH) or (µ-O)2MnIIIMnIV (4) upon warming to room temperature. The physical properties of 3 and 4 were probed using UV-vis, EPR, X-ray absorption, and IR spectroscopies and mass spectrometry. Compounds 3 and 4 were capable of phenol oxidation to yield a phenoxyl radical via a concerted PCET oxidation, supporting the proposed mechanism of tyrosyl radical cofactor generation in RNRs. The synthetic models demonstrate that the postulated O2/Mn2/tyrosine activation mechanism in class Ib Mn2 RNRs is plausible and provides spectral insights into intermediates currently elusive in the native enzyme.


Assuntos
Oxidantes , Ribonucleotídeo Redutases , Ribonucleotídeo Redutases/metabolismo , Manganês/química , Oxirredução , Superóxidos/química , Tirosina
4.
J Environ Manage ; 351: 119876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157577

RESUMO

The removal of organic pollutants by biochar has been extensively studied. However, the differences in the removal mechanisms of contaminants by biochar obtained from different preparation techniques have not been thoroughly elucidated. In this study, the catalytic performances of hydrochar (HC) and pyrochar (PC) were compared in the dark and light. Owing to more persistent free radicals (PFRs), greater defects and stronger charge transfer ability on the surface, PC could produce a certain concentration of superoxide radicals (•O2-) even in the dark, making its degradation efficiency for benzoic acid (BA) 11% higher than that of HC. On the contrary, when the light was turned on, HC rather than PC can generate a higher amount of hydroxyl radical (•OH), resulting in an 11% higher degradation efficiency of BA compared to PC. The improvement of catalytic performance in HC originated from its oxygen-containing functional groups (OFGs), which was beneficial for its effective production of singlet oxygen (1O2) and ·OH under light exposure. For PC, its photocatalytic activity depended mainly on the formation of 1O2 induced by the triplet of DOM (dissolved organic matter), but the lack of oxidative ·OH in its system leads to a lower degradation efficiency than that of HC. To prove the universal applicability of this rule for biochar materials, HC and PC materials obtained from soybean residue were also prepared for degrading BA. This work is devoted to an in-depth exploration of the catalytic activation mechanism of biochar obtained by different technological methods, and can create conditions for the generation of more dominant reactive oxygen species (ROS) on biochar, thus providing the guidance for environmental remediation.


Assuntos
Carvão Vegetal , Superóxidos , Espécies Reativas de Oxigênio , Radicais Livres/química , Carvão Vegetal/química , Superóxidos/química , Oxigênio/química
5.
Int J Biol Macromol ; 259(Pt 1): 129096, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159699

RESUMO

The current study created three novel chitosan derivatives named BACS, PIBACS, and MHBACS by grafting benzoic acid (BA), p-isopropyl benzoic acid (PIBA), and m-hydroxybenzoic acid (MHBA) onto chitosan (CS). The structures of the derivatives were investigated using infrared spectroscopy (FT-IR) and nuclear magnetic resonance (13C NMR). The derivatives were discovered to be 45.06 %-60.49 % substituted using elemental analysis (EA). Based on the findings of in vitro antioxidant experiments (hydroxyl radical scavenging activity, superoxide anion radical scavenging activity, and DPPH radical scavenging activity), all of the derivatives had a higher hydroxyl radical scavenging activity than the chitosan raw material. MHBACS scavenged (31.02 ± 0.90)% of hydroxyl radicals at 0.5 mg/mL, 28.69 % more than chitosan raw. The derivatives scavenged more superoxide anion radicals than the chitosan feedstock at a particular concentration. For instance, at a test dose of 0.2 mg/mL, the scavenging rate of MHBACS on superoxide anion radicals was 7.75 % greater than that of chitosan raw materials. DPPH radical scavenging activity, on the other hand, was not as competent as chitosan feedstock. The growth rate approach was used to assess the potential of the three derivatives to inhibit the development of four phytopathogenic fungi. Chitosan derivatives have better antifungal efficacy than chitosan raw materials. PIBACS, MHBACS, BACS, and Wuyiencin inhibited Phytophthora capsici by (98.03 ± 1.95)%, (81.73 ± 1.63)%, (66.38 ± 1.81)%, and (93.01 ± 2.69)%, respectively, at 1.0 mg/mL. PIBACS had a higher inhibitory impact on Phytophthora capsici than the positive control. Based on the evidence presented above, it is reasonable to conclude that the addition of benzoic acid molecules increased the antioxidant and antifungal capabilities of chitosan.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Quitosana/química , Antifúngicos/farmacologia , Antifúngicos/química , Ácido Benzoico , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos/química , Radical Hidroxila/química
6.
Mar Drugs ; 21(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132927

RESUMO

A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 µg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.


Assuntos
Quitosana , Quinolinas , Antioxidantes/farmacologia , Antioxidantes/química , Superóxidos/química , Quitosana/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Quinolinas/farmacologia
7.
Sci Rep ; 13(1): 20964, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017306

RESUMO

Acetylation could improve the bioavailability of (-)-Epigallocatechin-3-Gallate (EGCG), but the relationship of substitution degree and antioxidant capacity of acetylated EGCG was unclear. The acetylated EGCG products were separated by preparation high performance liquid chromatography (HPLC). Two mono substituted acetylated EGCG, three substituted acetylated EGCG (T-AcE), eight substituted acetylated EGCG (E-AcE) and (-)-Epigallocatechin gallate (EGCG) were isolated. The 7-acetyl-EGCG (S7-ACEGCG) and 7-acetyl-EGCG (T-AcE) were identified for the first time. The antioxidant capacity, superoxide anion radical scavenging capacities, and hydroxyl radical scavenging capacities of EGCG decreased significantly after acetylation modification. The more EGCG acetylation modification sites, the lower the total antioxidant capacity, superoxide anion radical scavenging capacities, and hydroxyl radical scavenging capacities. The antioxidant capacity, superoxide anion radical scavenging capacities, and hydroxyl radical scavenging capacities of 5-acetyl-EGCG (S5-ACE) were higher than 7-acetyl-EGCG (S7-AcE). Combining all the results in this and previous studies, acetylation modification is not conducive to the performance of EGCG antioxidant capacity.


Assuntos
Antioxidantes , Catequina , Antioxidantes/farmacologia , Antioxidantes/química , Superóxidos/química , Radical Hidroxila , Catequina/química
8.
J Chem Inf Model ; 63(21): 6756-6767, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874902

RESUMO

Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.


Assuntos
Arabidopsis , Superóxidos , Superóxidos/química , Superóxidos/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas Transferidoras de Elétrons/química
9.
Anal Chem ; 95(40): 15102-15109, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779257

RESUMO

The superoxide anion (O2•-) is one of the primary reactive oxygen species in biological systems. Developing a determination system for O2•- in vivo has attracted much attention thanks to its complex biological function. Herein, we proposed a new perylene-based chemiluminescence (CL) probe, the SH-PDI polymer, which was capable of generating strong CL signals with O2•- in comparison with other ROS. The CL mechanism involved was proposed to be a kind of oxidation reaction induced by the breakage of the S-S and S-H bonds into sulfoxide bonds by O2•-. Subsequently, a nanoprecipitation method was introduced, using cumene-terminated poly(styrene-co-maleic anhydride) as the amphiphilic agent, to obtain water-soluble nanoparticles, SPPS NPs, which exhibited not only stronger CL intensity but also higher selectivity toward O2•- than the SH-PDI polymer. Moreover, the CL wavelength of the SPPS-O2•- system was found to be located at 580 and 710 nm, which was conducive to CL imaging. By virtue of these advantages, SPPS NPs were utilized to evaluate the O2•- level in vitro in the range of 0.25-60 µM at pH 7.0, with a detection limit of 8.2 × 10-8 M (S/N = 3). Moreover, SPPS NPs were also capable of imaging O2•- in an LPS-induced acute inflammation mice model and drug-induced acute kidney injury (AKI).


Assuntos
Nanopartículas , Perileno , Animais , Camundongos , Superóxidos/química , Polímeros/química , Espécies Reativas de Oxigênio
10.
Acc Chem Res ; 56(16): 2197-2212, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527056

RESUMO

In this Account, we overview and highlight synthetic bioinorganic chemistry focused on initial adducts formed from the reaction of reduced ligand-copper(I) coordination complexes with molecular oxygen, reactions that produce ligand-CuII(O2•-) complexes (O2•- ≡ superoxide anion). We provide mostly a historical perspective, starting in the Karlin research group in the 1980s, emphasizing the ligand design and ligand effects, structure, and spectroscopy of these O2 adducts and subsequent further reactivity with substrates, including the interaction with a second ligand-CuI complex to form binuclear species. The Account emphasizes the approach, evolution, and results obtained in the Karlin group, a synthetic bioinorganic research program inspired by the state of knowledge and insights obtained on enzymes possessing copper ion active sites which process molecular oxygen. These constitute an important biochemistry for all levels/types of organisms, bacteria, fungi, insects, and mammals, including humans.Copper is earth abundant, and its redox properties in complexes allow for facile CuII/CuI interconversions. Simple salts or coordination complexes have been well known to serve as oxidants for the stoichiometric or catalytic oxidation or oxygenation (i.e., O-atom insertion) of organic substrates. Thus, copper dioxygen- or peroxide-centered synthetic bioinorganic studies provide strong relevance and potential application to synthesis or even the development of cathodic catalysts for dioxygen reduction to hydrogen peroxide or water, as in fuel cells. The Karlin group's focus however was primarily oriented toward bioinorganic chemistry with the goal to provide fundamental insights into the nature of copper-dioxygen adducts and further reduced and/or protonated derivatives, species likely occurring in enzyme turnover or related in one or more aspects of formation, structure, spectroscopic properties, and scope of reactivity toward organic/biochemical substrates.Prior to this time, the 1980s, O2 adducts of redox-active first-row transition-metal ions focused on iron, such as the porphyrinate-Fe centers occurring in the oxygen carrier proteins myoglobin and hemoglobin and that determined to occur in cytochrome P-450 monooxygenase turnover. Deoxy (i.e., reduced Fe(II)) heme proteins react with O2, giving FeIII-superoxo complexes (preferably referred to by traditional biochemists as ferrous-oxy species). And, it was in the 1970s that great strides were made by synthetic chemists in generating hemes capable of forming O2 adducts, their physiochemical characterization providing critical insights to enzyme (bio)chemistry and providing ideas and important goals leading to countless person years of future research.


Assuntos
Cobre , Ligantes , Cobre/química , Oxigênio/química , Superóxidos/química , Modelos Moleculares , Metaloendopeptidases/metabolismo , Oxigenases de Função Mista/metabolismo , Domínio Catalítico , Ligação de Hidrogênio
11.
Talanta ; 265: 124860, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429254

RESUMO

Superoxide anion (O2•-) is typically produced in living cells and organisms, while excess O2•- may cause unexpected damage, so monitoring and scavenging the O2•- is of considerable significance to exploring physiological and pathological process. In this study, a Cu-based metal-organic framework (Cu-MOF) which comprise sequential Cu metal ion and conductive organic 2,5-dicarboxylic acid-3,4-ethylene dioxythiophene is synthesized to mimic superoxide dismutase (SOD), in which Cu is the essence of active site. On one hand, the Cu-MOF possesses excellent electrocatalytic activity to detect O2•- at -0.05 V, biased at which potential the electrode showed good linearity toward O2•- with detection limit of 0.283 µM and interference immunity for AA, DA, UA, 5-HT and H2O2. The Cu-MOF modified microelectrode was applied for measuring the O2•- released from living cells real time and monitoring O2•- generation in rat brain. On the other hand, this Cu-MOF has the catalytic activity to mimic the superoxide dismutase for scavenging O2•- in HeLa cells effectively. This work provides a methodology to design metal ion based enzyme mimetic for analyzing and scavenging O2•- in cells and in vivo.


Assuntos
Estruturas Metalorgânicas , Superóxidos , Humanos , Animais , Ratos , Superóxidos/química , Superóxido Dismutase , Células HeLa , Peróxido de Hidrogênio/química , Microeletrodos
12.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298867

RESUMO

Loach, rich in nutrients, such as proteins, amino acids, and mineral elements, is being gradually favored by consumers. Therefore, in this study, the antioxidant activity and structural characteristics of loach peptides were comprehensively analyzed. The loach protein (LAP) with a molecular weight between 150 and 3000 Da was graded by ultrafiltration and nanofiltration processes, which exhibited excellent scavenging activity against DPPH radical (IC50 2.91 ± 0.02 mg/mL), hydroxyl radical (IC50 9.95 ± 0.03 mg/mL), and superoxide anion radical (IC50 13.67 ± 0.33 mg/mL). Additionally, LAP was purified by gel filtration chromatography, and two principal components (named as LAP-I and LAP-II) were isolated. A total of 582 and 672 peptides were identified in LAP-I and LAP-II, respectively, through structural analysis. The XRD results revealed that LAP-I and LAP-II had an irregular amorphous structure. The 2D-NMR spectroscopy results suggested that LAP-I had a compact stretch conformation in the D2O solution, while LAP-II had a folded conformation. Overall, the study results suggested that loach peptide could be a potential antioxidant agent and might provide valuable information for chain conformation and antioxidant mechanism research further.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Antioxidantes/química , Hidrolisados de Proteína/química , Sequestradores de Radicais Livres/química , Peptídeos/química , Proteínas , Superóxidos/química
13.
Inorg Chem ; 62(23): 8747-8760, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37247425

RESUMO

The cellular level of reactive oxygen species (ROS) has to be controlled to avoid some pathologies, especially those linked to oxidative stress. One strategy for designing antioxidants consists of modeling natural enzymes involved in ROS degradation. Among them, nickel superoxide dismutase (NiSOD) catalyzes the dismutation of the superoxide radical anion, O2•-, into O2 and H2O2. We report here Ni complexes with tripeptides derived from the amino-terminal CuII- and NiII-binding (ATCUN) motif that mimics some structural features found in the active site of the NiSOD. A series of six mononuclear NiII complexes were investigated in water at physiological pH with different first coordination spheres, from compounds with a N3S to N2S2 set, and also complexes that are in equilibrium between the N-coordination (N3S) and S-coordination (N2S2). They were fully characterized by a combination of spectroscopic techniques, including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations and their redox properties studied by cyclic voltammetry. They all display SOD-like activity, with a kcat ranging between 0.5 and 2.0 × 106 M-1 s-1. The complexes in which the two coordination modes are in equilibrium are the most efficient, suggesting a beneficial effect of a nearby proton relay.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/química , Superóxido Dismutase/química , Oxirredução , Superóxidos/química , Níquel/química
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835226

RESUMO

Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.


Assuntos
Produtos Biológicos , Isoflavonas , Superóxido Dismutase , Humanos , Antioxidantes/química , Produtos Biológicos/química , Diabetes Mellitus Tipo 2 , Peróxido de Hidrogênio , Isoflavonas/química , PPAR gama/química , Superóxido Dismutase/química , Superóxidos/química
15.
J Agric Food Chem ; 71(10): 4382-4393, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852964

RESUMO

The reactivity of 5-[(E)-2-(4-hydroxyphenyl)ethen-1-yl]benzene-1,3-diol (trans-resveratrol) and related compounds toward electrogenerated superoxide radical anion (O2•-) were investigated using electrochemistry, in situ electrolytic electron spin resonance, and in situ electrolytic ultraviolet-visible spectral measurements, in N,N-dimethylformamide (DMF) with the aid of density functional theory (DFT) calculations. The quasi-reversible cyclic voltammogram of dioxygen/O2•- was modified by the presence of trans-resveratrol, suggesting that the electrogenerated O2•- was scavenged by trans-resveratrol through proton-coupled electron transfer (PCET) via three phenolic hydroxy groups (OH) on the stilbene moiety. The reactivity of trans-resveratrol toward O2•- characterized by the OHs was experimentally confirmed in comparative analyses using some related compounds, pinosylvin, pterostilbene, p-coumaric acid, and so on, in DMF. The electrochemical and DFT results suggested that a concerted PCET mechanism via 4'OH of trans-resveratrol proceeds, where the coplanarity of the two phenolic rings in the stilbene moiety linked by an ethylene bridge is essential for a successful O2•- scavenging.


Assuntos
Estilbenos , Superóxidos , Resveratrol , Superóxidos/química , Dimetilformamida , Antioxidantes/química , Estilbenos/química
16.
Chem Biodivers ; 20(1): e202200626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36448941

RESUMO

The purpose of this study is to optimize the extraction process and study antioxidant activity of Polysaccharide extracted from Centipeda minima. The Box-Behnken design-response surface methodology was adopted to optimize the extraction process of polysaccharides from Centipeda minima. We purified the crude polysaccharides from Centipeda minima, as well as determined the purity, monosaccharide composition, and molecular weight of the purified fraction. Fourier transform infrared spectrometer (FT-IR) and scanning electron microscopy (SEM) were used to analyze the structural features of the polysaccharides. Further, we investigated the antioxidant activities of different fractions of polysaccharides. Consequently, the results showed that the optimum extraction conditions for polysaccharides were: a liquid-solid ratio of 26 mL/g, extraction temperature of 85.5 °C, and extraction time of 2.4 h. Moreover, the yield of polysaccharides measured under these conditions was close to the predicted value. After purification, we obtained four components of Centipeda minima polysaccharides (CMP). The purity, monosaccharide composition, molecular weight, and structural characteristics of CMP were different, but with similar infrared absorption spectra. CMP exhibited a typical infrared absorption characteristic of a polysaccharide. Besides, CMP displayed good antioxidant activity, with potential to scavenge DPPH radical, hydroxyl radical, and superoxide radical. Therefore, this study provides a reference for future research on the structure and biological activity of CMP, and lays a theoretical foundation for food processing and medicinal development of CMP.


Assuntos
Antioxidantes , Polissacarídeos , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Superóxidos/química , Monossacarídeos
17.
Carbohydr Res ; 521: 108678, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116378

RESUMO

In the present study, four new chitosan oligosaccharide derivatives bearing quinolinyl urea groups were synthesized by reaction between 2-methoxyformylated chitosan oligosaccharide and aminoquinoline. The chitosan oligosaccharide derivatives were characterized by Fourier Transform Infrared (FTIR) and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The obtained results confirmed that chitosan oligosaccharide quinolinyl urea derivatives were successfully synthesized. Meanwhile, the antioxidant activities of different chitosan oligosaccharide derivatives were examined in vitro. Experimentally, it was demonstrated that chitosan oligosaccharide quinolinyl urea derivatives had superior antioxidant activity compared with chitosan oligosaccharide and the antioxidant effects were concentration-dependent. Especially, when the concentration was 1.6 mg/mL, their superoxide anion radical scavenging rates could reach to 72.35 ± 0.49%, 100.00 ± 0.21%, 84.63 ± 0.49%, and 87.22 ± 0.32%, respectively. And the hydroxyl radical scavenging rates could reach to 100.00 ± 0.82%, 98.49 ± 4.08%, 100.00 ± 5.76%, and 92.07 ± 5.10%. In addition, the cytotoxic activity of the prepared chitosan derivatives against L929 cells was determined by CCK-8 assay. The cell survival rates were all higher than 90%, which intuitively indicated that the samples had almost no cytotoxicity. The findings indicated that the enhanced antioxidant property and biocompatibility of these chitosan oligosaccharide quinolinyl urea derivatives could enlarge the scope of the application of chitosan oligosaccharide, particularly as an antioxidant in food packaging, biomedical, pharmaceutical, cosmetics industries and other fields.


Assuntos
Antioxidantes , Quitosana , Aminoquinolinas , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Radical Hidroxila , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos/química , Ureia/química
18.
Carbohydr Res ; 521: 108667, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099722

RESUMO

Chitooligosaccharides (COS) with two different molecular weights are acylated with four nonpolar amino acids: glycine (Gly), alanine (Ala), valine (Val) and leucine (Leu) to obtain 2-aminoacetyl-chitooligosaccharide (2-GlyCOS), 2-aminopropionyl-chitooligosaccharide (2-AlaCOS), 2-amino-3-methylbutyryl-chitooligosaccharide (2-ValCOS), and 2-amino-4-methylpentanoyl-chitooligosaccharide (2-LeuCOS). The structure of the derivatives was characterized by FT-IR spectroscopy, 13C NMR spectroscopy, and elemental analysis. The antioxidant activities of the derivatives, such as hydroxyl radical (·OH) scavenging ability, superoxide anion (O2·-) scavenging ability, reducing ability, and DPPH radical scavenging ability, were investigated using various established systems. Compared with chitooligosaccharide and nonpolar amino acids, all derivatives have strong scavenging ability toward hydroxyl radicals and superoxide anions, and the clearance rate was 19.05% and 67.70% separately. The reducing ability and DPPH free radical scavenging ability of the derivatives are only 0.021Abs and 32.97%. Among them, only 2-AlaLCOS has significant reducing ability, and the value can reach 0.143Abs. The above results showed that the antioxidant activity of some derivatives was higher than that of chitooligosaccharide. The water solubility of the new derivatives was also greatly improved compared to that of nonpolar amino acids. Therefore, the application of 2-aminoacyl-chitooligosaccharides (2-AACOS) in antioxidants has laid a foundation and has certain potential application value in the fields of medicine, agriculture, and animal husbandry.


Assuntos
Antioxidantes , Superóxidos , Alanina , Animais , Antioxidantes/química , Quitina , Quitosana , Sequestradores de Radicais Livres/química , Glicina , Radical Hidroxila , Leucina , Oligossacarídeos , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos/química , Superóxidos/metabolismo , Valina , Água
19.
J Biol Chem ; 298(9): 102304, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933012

RESUMO

Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli , NADP Trans-Hidrogenase Específica para B , Motivos de Aminoácidos , Sequência de Aminoácidos , Cisteína/química , Cisteína/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Flavoproteínas/química , Peróxido de Hidrogênio/química , NAD/metabolismo , NADP/metabolismo , NADP Trans-Hidrogenase Específica para B/química , NADP Trans-Hidrogenase Específica para B/genética , Niacinamida , Oxigênio/química , Superóxidos/química , Treonina/química , Treonina/genética
20.
Mar Drugs ; 20(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323482

RESUMO

The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the degradation of most extracellular matrix components. In this survey, four cyanobacteria strains were explored for their capacity to produce secondary metabolites with biotechnological potential for use in anti-aging formulations. Leptolyngbya boryana LEGE 15486 and Cephalothrix lacustris LEGE 15493 from freshwater ecosystems, and Leptolyngbya cf. ectocarpi LEGE 11479 and Nodosilinea nodulosa LEGE 06104 from marine habitats were sequentially extracted with acetone and water, and extracts were analyzed for their toxicity in cell lines with key roles in the skin context (HaCAT, 3T3L1, and hCMEC). The non-toxic extracts were chemically characterized in terms of proteins, carotenoids, phenols, and chlorophyll a, and their anti-aging potential was explored through their ability to scavenge the physiological free radical superoxide anion radical (O2•−), to reduce the activity of the MMPs elastase and hyaluronidase, to inhibit tyrosinase and thus avoid melanin production, and to block UV-B radiation (sun protection factor, SPF). Leptolyngbya species stood out for anti-aging purposes: L. boryana LEGE 15486 presented a remarkable SPF of 19 (at 200 µg/mL), being among the best species regarding O2•− scavenging, (IC50 = 99.50 µg/mL) and also being able to inhibit tyrosinase (IC25 = 784 µg/mL), proving to be promising against UV-induced skin-aging; L. ectocarpi LEGE 11479 was more efficient in inhibiting MMPs (hyaluronidase, IC50 = 863 µg/mL; elastase, IC50 = 391 µg/mL), thus being the choice to retard dermal density loss. Principal component analysis (PCA) of the data allowed the grouping of extracts into three groups, according to their chemical composition; the correlation of carotenoids and chlorophyll a with MMPs activity (p < 0.01), O2•− scavenging with phenolic compounds (p < 0.01), and phycocyanin and allophycocyanin with SPF, pointing to these compounds in particular as responsible for UV-B blockage. This original survey explores, for the first time, the biotechnological potential of these cyanobacteria strains in the field of skin aging, demonstrating the promising, innovative, and multifactorial nature of these microorganisms.


Assuntos
Misturas Complexas , Cosméticos , Cianobactérias/química , Sequestradores de Radicais Livres , Hiperpigmentação , Protetores contra Radiação , Envelhecimento da Pele , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Biotecnologia , Carotenoides/análise , Carotenoides/química , Carotenoides/farmacologia , Linhagem Celular , Clorofila A/análise , Clorofila A/química , Clorofila A/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Cianobactérias/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Protetores contra Radiação/análise , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Metabolismo Secundário , Superóxidos/química , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...